Cable, Dylan M, Evan Murray, Vignesh Shanmugam, Simon Zhang, Luli S Zou, Michael Diao, Haiqi Chen, Evan Z Macosko, Rafael A Irizarry, and Fei Chen. 2022. “Cell Type-Specific Inference of Differential Expression in Spatial Transcriptomics.” Nature Methods, 1–12.
Cai, Peiying, Mark D Robinson, and Simone Tiberi. 2024. “DESpace: Spatially Variable Gene Detection via Differential Expression Testing of Spatial Clusters.” Bioinformatics 40 (2): btae027.
Chen, Carissa, Hani Jieun Kim, and Pengyi Yang. 2024. “Evaluating Spatially Variable Gene Detection Methods for Spatial Transcriptomics Data.” Genome Biology 25 (1): 18.
Das Adhikari, Sikta, Jiaxin Yang, Jianrong Wang, and Yuehua Cui. 2024. “Recent Advances in Spatially Variable Gene Detection in Spatial Transcriptomics.” Computational and Structural Biotechnology Journal 23: 883–91.
Hu, Jian, Xiangjie Li, Kyle Coleman, Amelia Schroeder, Nan Ma, David J. Irwin, Edward B. Lee, Russell T. Shinohara, and Mingyao Li. 2021.
“SpaGCN: Integrating Gene Expression, Spatial Location and Histology to Identify Spatial Domains and Spatially Variable Genes by Graph Convolutional Network.” Nature Methods 18: 1342–51.
https://doi.org/10.1038/s41592-021-01255-8.
Li, Zhijian, Zain M Patel, Dongyuan Song, Guanao Yan, Jingyi Jessica Li, and Luca Pinello. 2023. “Benchmarking Computational Methods to Identify Spatially Variable Genes and Peaks.” bioRxiv, 2023.12.02.569717.
Singhal, Vipul, Nigel Chou, Joseph Lee, Yifei Yue, Jinyue Liu, Wan Kee Chock, Li Lin, et al. 2024. “BANKSY Unifies Cell Typing and Tissue Domain Segmentation for Scalable Spatial Omics Data Analysis.” Nature Genetics 56 (3): 431–41.
Song, Dongyuan, Qingyang Wang, Guanao Yan, Tianyang Liu, Tianyi Sun, and Jingyi Jessica Li. 2024. “scDesign3 Generates Realistic in Silico Data for Multimodal Single-Cell and Spatial Omics.” Nature Biotechnology 42 (2): 247–52.
Sun, Shiquan, Jiaqiang Zhu, and Xiang Zhou. 2020.
“Statistical Analysis of Spatial Expression Patterns for Spatially Resolved Transcriptomic Studies.” Nature Methods 17: 193–200.
https://doi.org/10.1038/s41592-019-0701-7.
Svensson, Valentine, Sarah A. Teichmann, and Oliver Stegle. 2018.
“SpatialDE: Identification of Spatially Variable Genes.” Nature Methods 15: 343–46.
https://doi.org/10.1038/nmeth.4636.
Weber, Lukas M., Arkajyoti Saha, Abhirup Datta, Kasper D. Hansen, and Stephanie C. Hicks. 2023.
“nnSVG for the Scalable Identification of Spatially Variable Genes Using Nearest-Neighbor Gaussian Processes.” Nature Communications 14: 4059.
https://doi.org/10.1038/s41467-023-39748-z.
Yan, Guanao, Shuo Harper Hua, and Jingyi Jessica Li. 2024. “Categorization of 33 Computational Methods to Detect Spatially Variable Genes from Spatially Resolved Transcriptomics Data.” arXiv, May.
Yu, Jinge, and Xiangyu Luo. 2022. “Identification of Cell-Type-Specific Spatially Variable Genes Accounting for Excess Zeros.” Bioinformatics 38 (17): 4135–44.
Yu, Shan, and Wei Vivian Li. 2024. “spVC for the Detection and Interpretation of Spatial Gene Expression Variation.” Genome Biology 25 (1): 103.
Zhao, Edward, Matthew R. Stone, Xing Ren, Jamie Guenthoer, Kimberly S. Smythe, Thomas Pulliam, Stephen R. Williams, et al. 2021.
“Spatial Transcriptomics at Subspot Resolution with BayesSpace.” Nature Biotechnology 39: 1375–84.
https://doi.org/10.1038/s41587-021-00935-2.
Zhu, Jiaqiang, Shiquan Sun, and Xiang Zhou. 2021.
“SPARK-X: Non-Parametric Modeling Enables Scalable and Robust Detection of Spatial Expression Patterns for Large Spatial Transcriptomic Studies.” Genome Biology 22: 184.
https://doi.org/10.1186/s13059-021-02404-0.