Appendix D — Citation

Guidelines

If OSTA has been useful to your research, please consider citing:

HL Crowell*°, Y Dong*, I Billato, P Cai, M Emons, S Gunz, B Guo, M Li, A Mahmoud, A Manukyan, H Pagès, P Panwar, S Rao, CJ Sargeant, L Shepherd Kern, M Ramos, J Sun, M Totty, VJ Carey, Y Chen, L Collado-Torres, S Ghazanfar, KD Hansen, K Martinowich, KR Maynard, E Patrick, D Righelli, D Risso, S Tiberi, L Waldron, R Gottardo†°, MD Robinson†°, SC Hicks†°, LM Weber†°. Orchestrating spatial transcriptomics analysis with Bioconductor. bioRxiv (2025). DOI: 10.1101/2025.11.20.688607

(* co-first. † co-senior. ° correspondence.)

Notably, OSTA pieces together work and information from numerous researchers. As such, we suggest readers cite the pieces of work they have either used or consulted to conduct their research – be it (R, Python, or other) software, benchmarks that informed their methodological decisions, review or perspective pieces, or other. To facilitate this, we provide a list in the section below.

Collection

We here make an attempt to collect all biotechnology, dataset, software, review, benchmark, or other, references and resources mentioned throughout the book.

If you spot any obvious omissions or mistakes, please let us know!
Bioconductor Gentleman et al. (2004); Huber et al. (2015); Vincent J. Carey (2025)
OSCA Amezquita et al. (2020)
benchmark Hartman and Satija (2024)
CosMx S. He et al. (2022)
Curio Seeker Curio Bioscience
MERFISH K. H. Chen et al. (2015)
MERSCOPE Vizgen
Slide-seqV2 Stickels et al. (2021)
ST Ståhl et al. (2016)
Stereo-seq STOmics
Visium 10x Genomics
Visium HD 10x Genomics
Xenium 10x Genomics
3D ST Vickovic et al. (2022)
Open-ST Schott et al. (2024); Schott et al. (2025)
scMAGS Baran and Doğan (2023)
CITE-seq Y. Liu et al. (2023)
spatial omics Moffitt, Lundberg, and Heyn (2022); Bressan, Battistoni, and Hannon (2023)
spatial analyses Palla, Fischer, et al. (2022)
spatial proteomics Semba and Ishimoto (2024); Lundberg and Borner (2019)
spatial epigenomics D. Zhang et al. (2023)
spatial transcriptomics Rao et al. (2021); Moses and Pachter (2022); Cheng et al. (2023); Tian, Chen, and Macosko (2023)
single-cell spatial proteomics Paul et al. (2021); Mund, Brunner, and Mann (2022)
single-cell & spatial transcriptomics Gulati et al. (2025)
probe selection & panel design Kuemmerle et al. (2024); Y. Zhang et al. (2024)
mass spectrometry imaging H. Zhang et al. (2024); Palomino and Muddiman (2025)
sf Pebesma (2018)
sp Pebesma and Bivand (2005)
Rarr Smith and Gruson (2023)
pizzarr n/a
alabaster.base A. Lun (2023)
MoleculeExperiment Peters Couto et al. (2023)
SingleCellExperiment Amezquita et al. (2020)
SpatialExperiment Righelli et al. (2022)
SpatialFeatureExperiment Moses et al. (2023)
Seurat Hao et al. (2023)
Scanpy Wolf, Angerer, and Theis (2018)
Squidpy Palla, Spitzer, et al. (2022)
Giotto J. G. Chen et al. (2025); Dries et al. (2021)
VoltRon Manukyan et al. (2023)
spatialGE Ospina et al. (2022)
SpatialData Marconato et al. (2025)
Bruker’s CosMx AtoMx
Vizgen’s MERSCOPE Visualizer
10 Genomic’s Xenium Xenium Explorer
10 Genomic’s Visium Loupe Browser
Seurat-Loupe conversion loupeR
iSEE Rue-Albrecht et al. (2018)
napari Sofroniew et al. (2025)
BiocPkgTools Su et al. (2025)
BiocViews V. J. Carey et al. (2025)
10x Genomics’ Visium processing Space Ranger
10x Genomics’ Xenium processing Xenium Ranger
Bruker’s CosMx processing AtoMx
Bruker’s CosMx tutorials scratch space
SpatialExperimentIO
SpatialFeatureExperiment Moses et al. (2023)
VisiumIO
XeniumIO
human breast cancer (Visium, Xenium) Janesick et al. (2023)
colorectal carcinoma (Visium/HD, Xenium) de Oliveira et al. (2025)
mouse brain (1k-plex CosMx) Bruker
human brain (6k-plex CosMx) Bruker
human brain (Visium) Maynard et al. (2021)
type I diabetes (IMC) Damond et al. (2019)
axolotl brain (Stereo-seq) Wei et al. (2022)
spatialLIBD Pardo et al. (2022)
STexampleData Righelli et al. (2022)
anndata` Virshup et al. (2024)
anndataR Deconinck et al. (2025)
basilisk A. Lun (2022)
reticulate Ushey, Allaire, and Tang (2017)
zellkonverter Zappia et al. (2020)
technical publishing systems R Markdown, Quarto
Rsubread Liao, Smyth, and Shi (2019)
stPipe Y. Xu et al. (2025)
10x Genomics’ Visium SpaceRanger
STOmics’ Stereo-seq SAW; Gong et al. (2024)
theory Bhuva et al. (2024)
scater McCarthy et al. (2017)
SpotSweeper Totty, Hicks, and Guo (2025)
CARDspa Ma and Zhou (2022)
cell2location Kleshchevnikov et al. (2022)
DSTG Song and Su (2021)
NMFreg_tutorial
novosparc Nitzan et al. (2019)
Giotto’s SpatialDWLS J. G. Chen et al. (2025)
scvi-tools’s DestVI Lopez et al. (2022)
SD2 H. Li et al. (2022)
spacexr’s RCDT Cable, Murray, Zou, et al. (2022)
SpaOTsc Cang and Nie (2020)
SpatialDecon Danaher et al. (2022)
SpiceMIx Chidester et al. (2023)
SPOTlight Elosua-Bayes et al. (2021)
std-poisson Berglund et al. (2018)
STdeconvolve Miller et al. (2022)
stereoscope Andersson et al. (2020)
STRIDE D. Sun et al. (2022)
Tangram Biancalani et al. (2021)
benchmarks Sang-aram et al. (2023); H. Li et al. (2023); Gaspard-Boulinc et al. (2025)
Baysor Petukhov et al. (2022)
cellpose Stringer et al. (2021)
FastReseg Wu, Beechem, and Danaher (2024)
proseg Jones et al. (2025)
ssam Park et al. (2021)
segger_dev Heidari et al. (2025)
spatial bleeding Mitchel et al. (2025)
hoodscanR N. Liu et al. (2025)
imcRtools Windhager et al. (2023)
scider M. Li et al. (2025)
limma Baldoni et al. (2025)
edgeR Y. Chen et al. (2025)
CCPlotR Ennis, Ó Broin, and Szegezdi (2023)
CellChatDB Jin et al. (2021)
CellphoneDB Efremova et al. (2020)
COMMOT Cang et al. (2023)
Giotto J. G. Chen et al. (2025)
mistyR Tanevski et al. (2022)
SpaOTsc Cang and Nie (2020)
SpatialDM Zhuoxuan Li et al. (2023)
theory Oyler-Yaniv et al. (2017)
review Armingol et al. (2020)
benchmark Z. Liu, Sun, and Wang (2022)
theory Cassella and Ephrussi (2022)
Visium HD Novoselsky et al. (2025)
Bento Mah et al. (2024)
MoleculeExperiment Peters Couto et al. (2023)
FISHFactor Walter, Stegle, and Velten (2023)
ClusterMap Y. He et al. (2021)
CellSP Aggarwal and Sinha (2025)
MAGIC Dijk et al. (2018)
Tangram Biancalani et al. (2021)
InSTAnT Kumar et al. (2024)
SPRAWL Bierman et al. (2024)
SpaGNN Fang et al. (2023)
scater McCarthy et al. (2017)
SpaNorm Salim et al. (2025)
theory Bhuva et al. (2024); Atta et al. (2024)
BANKSY Singhal et al. (2024)
BayesSpace Zhao et al. (2021)
CellCharter Varrone et al. (2024)
Leiden Traag, Waltman, and Eck (2019)
PRECAST W. Liu et al. (2023)
PROST Liang et al. (2024)
SpaceFlow Ren et al. (2022)
STAGATE Dong and Zhang (2022)
C-SIDE Cable, Murray, Shanmugam, et al. (2022)
CTSV J. Yu and Luo (2022)
DESpace Cai, Robinson, and Tiberi (2024)
nnSVG Weber et al. (2023)
scran A. T. L. Lun, McCarthy, and Marioni (2016)
SPARK S. Sun, Zhu, and Zhou (2020); Zhu, Sun, and Zhou (2021)
spatialDE Svensson, Teichmann, and Stegle (2018)
spVC S. Yu and Li (2024)
reviews Adhikari et al. (2024); Yan, Hua, and Li (2024)
benchmarks Zhijian Li et al. (2023); C. Chen, Kim, and Yang (2024)
msigdb n/a
msigdbr n/a
AUCell Aibar et al. (2017)
Molecular Signatures Database (MSigDB) Subramanian et al. (2005)
pasta Emons et al. (2025)
spatstat Baddeley and Turner (2005)
1st law of geography Tobler (1970)
spatial analysis Dale and Fortin (2014)
spatial data science Pebesma and Bivand (2023)
point pattern analysis Baddeley, Rubak, and Turner (2015)
Lee’s L Lee (2001)
Ripley’s K Ripley (1976)
LISA metric Anselin (1995); Anselin (2019)
joint count statistics Getis (2009)
napari Sofroniew et al. (2025)
QuPath Bankhead et al. (2017)
Prov-GigaPath H. Xu et al. (2024)
The Cancer Genome Atlas (TCGA) Tomczak, Czerwińska, and Wiznerowicz (2015)
The Cancer Imaging Archive (TCIA) n/a
imageTCGA n/a
TCIAAPI n/a
C-SIDE Cable, Murray, Shanmugam, et al. (2022)
DESpace Cai, Robinson, and Tiberi (2024)
lme4 Bates et al. (2015)
lmerTest Kuznetsova, Brockhoff, and Christensen (2017)
sosta Gunz, Crowell, and Robinson (2025)
spatialFDA n/a
spicyR Canete et al. (2022)
theory Argelaguet et al. (2021)
silhouette Rautenstrauch and Ohler (2025)
benchmarks Tran et al. (2020); Chazarra-Gil et al. (2021); Luecken et al. (2022)
harmony Korsunsky et al. (2019)
CellMixS Lütge et al. (2021)
rliger Welch et al. (2019)
scvi-tool’s Trangram Biancalani et al. (2021)

References

Adhikari, Sikta Das, Jiaxin Yang, Jianrong Wang, and Yuehua Cui. 2024. “Recent Advances in Spatially Variable Gene Detection in Spatial Transcriptomics.” Computational and Structural Biotechnology Journal 23: 883–91. https://doi.org/10.1016/j.csbj.2024.01.016.
Aggarwal, Bhavay, and Saurabh Sinha. 2025. “CellSP: Module Discovery and Visualization for Subcellular Spatial Transcriptomics Data.” bioRxiv, January. https://doi.org/10.1101/2025.01.12.632553.
Aibar, Sara, Carmen Bravo González-Blas, Thomas Moerman, Vân Anh Huynh-Thu, Hana Imrichova, Gert Hulselmans, Florian Rambow, et al. 2017. “SCENIC: Single-Cell Regulatory Network Inference and Clustering.” Nature Methods 14: 1083–86. https://doi.org/10.1038/nmeth.4463.
Amezquita, Robert A., Aaron T. L. Lun, Etienne Becht, Vince J. Carey, Lindsay N. Carpp, Ludwig Geistlinger, Federico Marini, et al. 2020. “Orchestrating Single-Cell Analysis with Bioconductor.” Nature Methods 17: 137–45. https://doi.org/10.1038/s41592-019-0654-x.
Andersson, Alma, Joseph Bergenstråhle, Michaela Asp, Ludvig Bergenstråhle, Aleksandra Jurek, José Fernández Navarro, and Joakim Lundeberg. 2020. “Single-Cell and Spatial Transcriptomics Enables Probabilistic Inference of Cell Type Topography.” Communications Biology 3 (1): 565. https://doi.org/10.1038/s42003-020-01247-y.
Anselin, Luc. 1995. “Local Indicators of Spatial Association—LISA.” Geographical Analysis 27: 93–115. https://doi.org/10.1111/j.1538-4632.1995.tb00338.x.
———. 2019. “A Local Indicator of Multivariate Spatial Association: Extending Geary’s c.” Geographical Analysis 51: 133–50. https://doi.org/10.1111/gean.12164.
Argelaguet, Ricard, Anna S E Cuomo, Oliver Stegle, and John C Marioni. 2021. Computational principles and challenges in single-cell data integration.” Nature Biotechnology 39: 1202–15. https://doi.org/10.1038/s41587-021-00895-7.
Armingol, Erick, Adam Officer, Olivier Harismendy, and Nathan E Lewis. 2020. “Deciphering Cell–Cell Interactions and Communication from Gene Expression.” Nature Reviews Genetics 22 (2): 71–88. https://doi.org/10.1038/s41576-020-00292-x.
Atta, Lyla, Kalen Clifton, Manjari Anant, Gohta Aihara, and Jean Fan. 2024. “Gene Count Normalization in Single-Cell Imaging-Based Spatially Resolved Transcriptomics.” Genome Biology 25 (153). https://doi.org/10.1186/s13059-024-03303-w.
Baddeley, Adrian, Ege Rubak, and Rolf Turner. 2015. Spatial Point Patterns: Methodology and Applications with r. 1st Edition. Chapman; Hall/CRC. https://doi.org/10.1201/b19708.
Baddeley, Adrian, and Rolf Turner. 2005. “Spatstat: An r Package for Analyzing Spatial Point Patterns.” Journal of Statistical Software 12: 1–42. https://doi.org/10.18637/jss.v012.i06.
Baldoni, Pedro L., Lizhong Chen, Mengbo Li, Yunshun Chen, and Gordon K. Smyth. 2025. “Dividing Out Quantification Uncertainty Enables Assessment of Differential Transcript Usage with Limma and edgeR.” bioRxiv. https://doi.org/10.1101/2025.04.07.647659.
Bankhead, Peter, Maurice B Loughrey, José A Fernández, Yvonne Dombrowski, Darragh G McArt, Philip D Dunne, Stephen McQuaid, et al. 2017. “QuPath: Open Source Software for Digital Pathology Image Analysis.” Scientific Reports 7 (1): 1–7. https://doi.org/10.1038/s41598-017-17204-5.
Baran, Yusuf, and Berat Doğan. 2023. “scMAGS: Marker Gene Selection from scRNA-Seq Data for Spatial Transcriptomics Studies.” Computers in Biology and Medicine 155 (106634). https://doi.org/10.1016/j.compbiomed.2023.106634.
Bates, Douglas, Martin Mächler, Ben Bolker, and Steve Walker. 2015. “Fitting Linear Mixed-Effects Models Using Lme4.” Journal of Statistical Software 67: 1–48. https://doi.org/10.18637/jss.v067.i01.
Berglund, Emelie, Jonas Maaskola, Niklas Schultz, Stefanie Friedrich, Maja Marklund, Joseph Bergenstråhle, Firas Tarish, et al. 2018. “Spatial Maps of Prostate Cancer Transcriptomes Reveal an Unexplored Landscape of Heterogeneity.” Nature Communications 9 (1): 2419. https://doi.org/10.1038/s41467-018-04724-5.
Bhuva, Dharmesh D., Chin Wee Tan, Agus Salim, Claire Marceaux, Marie A. Pickering, Jinjin Chen, Malvika Kharbanda, et al. 2024. “Library Size Confounds Biology in Spatial Transcriptomics Data.” Genome Biology 25 (99). https://doi.org/10.1186/s13059-024-03241-7.
Biancalani, Tommaso, Gabriele Scalia, Lorenzo Buffoni, Raghav Avasthi, Ziqing Lu, Aman Sanger, Neriman Tokcan, et al. 2021. “Deep Learning and Alignment of Spatially Resolved Single-Cell Transcriptomes with Tangram.” Nature Methods 18: 1352–62. https://doi.org/10.1038/s41592-021-01264-7.
Bierman, Rob, Jui M Dave, Daniel M Greif, and Julia Salzman. 2024. “Statistical Analysis Supports Pervasive RNA Subcellular Localization and Alternative 3’ UTR Regulation.” eLife 12 (December). https://doi.org/10.7554/elife.87517.
Bressan, Dario, Giorgia Battistoni, and Gregory J. Hannon. 2023. “The Dawn of Spatial Omics.” Science 381. https://doi.org/10.1126/science.abq4964.
Cable, Dylan M., Evan Murray, Vignesh Shanmugam, Simon Zhang, Luli S. Zou, Michael Diao, Haiqi Chen, Evan Z. Macosko, Rafael A. Irizarry, and Fei Chen. 2022. “Cell Type-Specific Inference of Differential Expression in Spatial Transcriptomics.” Nature Methods 19: 1076–87. https://doi.org/10.1038/s41592-022-01575-3.
Cable, Dylan M., Evan Murray, Luli S. Zou, Aleksandrina Goeva, Evan Z. Macosko, Fei Chen, and Rafael A. Irizarry. 2022. “Robust Decomposition of Cell Type Mixtures in Spatial Transcriptomics.” Nature Biotechnology 40: 517–26. https://doi.org/10.1038/s41587-021-00830-w.
Cai, Peiying, Mark D Robinson, and Simone Tiberi. 2024. “DESpace: Spatially Variable Gene Detection via Differential Expression Testing of Spatial Clusters.” Bioinformatics 40 (btae027, 2). https://doi.org/10.1093/bioinformatics/btae027.
Canete, Nicolas P, Sourish S Iyengar, John T Ormerod, Heeva Baharlou, Andrew N Harman, and Ellis Patrick. 2022. “spicyR: Spatial Analysis of in Situ Cytometry Data in r.” Bioinformatics 38: 3099–3105. https://doi.org/10.1093/bioinformatics/btac268.
Cang, Zixuan, and Qing Nie. 2020. “Inferring Spatial and Signaling Relationships Between Cells from Single Cell Transcriptomic Data.” Nature Communications 11 (2084). https://doi.org/10.1038/s41467-020-15968-5.
Cang, Zixuan, Yanxiang Zhao, Axel A. Almet, Adam Stabell, Raul Ramos, Maksim V. Plikus, Scott X. Atwood, and Qing Nie. 2023. “Screening Cell–Cell Communication in Spatial Transcriptomics via Collective Optimal Transport.” Nature Methods 20: 218–28. https://doi.org/10.1038/s41592-022-01728-4.
Carey, V. J., B. J. Harshfield, S. Falcon, S. Arora, and L. Shepherd. 2025. “biocViews: Categorized Views of r Package Repositories.” R Package. https://doi.org/10.18129/B9.bioc.biocViews.
Carey, Vincent J. 2025. “Bioconductor: Planning a Third Decade of Comprehensive Support for Genomic Data Science.” Patterns 6 (101319, 7). https://doi.org/10.1016/j.patter.2025.101319.
Cassella, Lucia, and Anne Ephrussi. 2022. “Subcellular Spatial Transcriptomics Identifies Three Mechanistically Different Classes of Localizing RNAs.” Nature Communications 13 (1). https://doi.org/10.1038/s41467-022-34004-2.
Chazarra-Gil, Ruben, Stijn van Dongen, Vladimir Yu Kiselev, and Martin Hemberg. 2021. Flexible comparison of batch correction methods for single-cell RNA-seq using BatchBench.” Nucleic Acids Research 49 (7): e42. https://doi.org/10.1093/nar/gkab004.
Chen, Carissa, Hani Jieun Kim, and Pengyi Yang. 2024. “Evaluating Spatially Variable Gene Detection Methods for Spatial Transcriptomics Data.” Genome Biology 25 (18). https://doi.org/10.1186/s13059-023-03145-y.
Chen, Jiaji G, Joselyn C Chávez-Fuentes, Matthew O’Brien, Junxiang Xu, Edward C Ruiz, Wen Wang, Iqra Amin, et al. 2025. “Giotto Suite: A Multiscale and Technology-Agnostic Spatial Multiomics Analysis Ecosystem.” Nature Methods, 1–13. https://doi.org/10.1038/s41592-025-02817-w.
Chen, Kok Hao, Alistair N. Boettiger, Jeffrey R. Moffitt, Siyuan Wang, and Xiaowei Zhuang. 2015. “Spatially Resolved, Highly Multiplexed RNA Profiling in Single Cells.” Science 348. https://doi.org/10.1126/science.aaa6090.
Chen, Yunshun, Lizhong Chen, Aaron T L Lun, Pedro L Baldoni, and Gordon K Smyth. 2025. “edgeR V4: Powerful Differential Analysis of Sequencing Data with Expanded Functionality and Improved Support for Small Counts and Larger Datasets.” Nucleic Acids Research 53 (gkaf018, 2). https://doi.org/10.1093/nar/gkaf018.
Cheng, Mengnan, Yujia Jiang, Jiangshan Xu, Alexios-Fotios A. Mentis, Shuai Wang, Huiwen Zheng, Sunil Kumar Sahu, Longqi Liu, and Xun Xu. 2023. “Spatially Resolved Transcriptomics: A Comprehensive Review of Their Technological Advances, Applications, and Challenges.” Journal of Genetics and Genomics 50: 625–40. https://doi.org/10.1016/j.jgg.2023.03.011.
Chidester, Benjamin, Tianming Zhou, Shahul Alam, and Jian Ma. 2023. SpiceMix Enables Integrative Single-Cell Spatial Modeling of Cell Identity.” Nat. Genet. 55 (1): 78–88. https://doi.org/10.1038/s41588-022-01256-z.
Dale, Mark R. T., and Marie-Josée Fortin. 2014. Spatial Analysis: A Guide for Ecologists. 2nd Edition. Cambridge University Press. https://doi.org/10.1017/CBO9780511978913.
Damond, Nicolas, Stefanie Engler, Vito R. T. Zanotelli, Denis Schapiro, Clive H. Wasserfall, Irina Kusmartseva, Harry S. Nick, et al. 2019. “A Map of Human Type 1 Diabetes Progression by Imaging Mass Cytometry.” Cell Metabolism 29: 755–68. https://doi.org/10.1016/j.cmet.2018.11.014.
Danaher, Patrick, Youngmi Kim, Brenn Nelson, Maddy Griswold, Zhi Yang, Erin Piazza, and Joseph M Beechem. 2022. “Advances in Mixed Cell Deconvolution Enable Quantification of Cell Types in Spatial Transcriptomic Data.” Nature Communications 13 (1): 385. https://doi.org/10.1038/s41467-022-28020-5.
de Oliveira, Michelli Faria, Juan Pablo Romero, Meii Chung, Stephen R. Williams, Andrew D. Gottscho, Anushka Gupta, Susan E. Pilipauskas, et al. 2025. “High-Definition Spatial Transcriptomic Profiling of Immune Cell Populations in Colorectal Cancer.” Nature Genetics 57: 1512–23. https://doi.org/10.1038/s41588-025-02193-3.
Deconinck, Louise, Luke Zappia, Robrecht Cannoodt, Martin Morgan, scverse core, Isaac Virshup, Chananchida Sang-Aram, et al. 2025. “anndataR Improves Interoperability Between r and Python in Single-Cell Transcriptomics.” bioRxiv. https://doi.org/10.1101/2025.08.18.669052.
Dijk, David van, Roshan Sharma, Juozas Nainys, Kristina Yim, Pooja Kathail, Ambrose J. Carr, Cassandra Burdziak, et al. 2018. “Recovering Gene Interactions from Single-Cell Data Using Data Diffusion.” Cell 174 (3): 716–729.e27. https://doi.org/10.1016/j.cell.2018.05.061.
Dong, Kangning, and Shihua Zhang. 2022. “Deciphering Spatial Domains from Spatially Resolved Transcriptomics with an Adaptive Graph Attention Auto-Encoder.” Nature Communications 13 (1739). https://doi.org/10.1038/s41467-022-29439-6.
Dries, Ruben, Qian Zhu, Rui Dong, Chee-Huat Linus Eng, Huipeng Li, Kan Liu, Yuntian Fu, et al. 2021. “Giotto: A Toolbox for Integrative Analysis and Visualization of Spatial Expression Data.” Genome Biology 22 (78). https://doi.org/10.1186/s13059-021-02286-2.
Efremova, Mirjana, Miquel Vento-Tormo, Sarah A Teichmann, and Roser Vento-Tormo. 2020. CellPhoneDB: Inferring Cell-Cell Communication from Combined Expression of Multi-Subunit Ligand-Receptor Complexes.” Nature Protocols 15 (4): 1484–1506. https://doi.org/10.1038/s41596-020-0292-x.
Elosua-Bayes, Marc, Paula Nieto, Elisabetta Mereu, Ivo Gut, and Holger Heyn. 2021. SPOTlight: Seeded NMF Regression to Deconvolute Spatial Transcriptomics Spots with Single-Cell Transcriptomes.” Nucleic Acids Research 49 (9): e50. https://doi.org/10.1093/nar/gkab043.
Emons, Martin, Samuel Gunz, Helena L. Crowell, Izaskun Mallona, Reinhard Furrer, and Mark D. Robinson. 2025. “Harnessing the Potential of Spatial Statistics for Spatial Omics Data with Pasta.” Nucleic Acids Research 53 (17): gkaf870. https://doi.org/10.1038/s41467-022-28020-5.
Ennis, Sarah, Pilib Ó Broin, and Eva Szegezdi. 2023. CCPlotR: An R Package for the Visualization of Cell-Cell Interactions.” Bioinformatics Advances 3 (1): vbad130. https://doi.org/10.1093/bioadv/vbad130.
Fang, Zhou, Adam J. Ford, Thomas Hu, Nicholas Zhang, Athanasios Mantalaris, and Ahmet F. Coskun. 2023. “Subcellular Spatially Resolved Gene Neighborhood Networks in Single Cells.” Cell Reports Methods 3 (5): 100476. https://doi.org/10.1016/j.crmeth.2023.100476.
Gaspard-Boulinc, Lucie C., Luca Gortana, Thomas Walter, Emmanuel Barillot, and Florence M. G. Cavalli. 2025. “Cell-Type Deconvolution Methods for Spatial Transcriptomics.” Nature Reviews Genetics. https://doi.org/https://doi.org/10.1038/s41576-025-00845-y.
Gentleman, Robert C., Vincent J. Carey, Ben Bolstad Douglas M Bates, Marcel Dettling, Sandrine Dudoit, Byron Ellis, Laurent Gautier, et al. 2004. “Bioconductor: Open Software Development for Computational Biology and Bioinformatics.” Genome Biology 5 (R80). https://doi.org/10.1186/gb-2004-5-10-r80.
Getis, Arthur. 2009. “Spatial Weights Matrices.” Geographical Analysis 41: 404–10. https://doi.org/10.1111/j.1538-4632.2009.00768.x.
Gong, Chun, Shengkang Li, Leying Wang, Fuxiang Zhao, Shuangsang Fang, Dong Yuan, Zijian Zhao, et al. 2024. “SAW: An Efficient and Accurate Data Analysis Workflow for Stereo-Seq Spatial Transcriptomics.” Gigabyte, 1–12. https://doi.org/10.46471/gigabyte.111.
Gulati, Gunsagar S., Jeremy Philip D’Silva, Yunhe Liu, Linghua Wang, and Aaron M. Newman. 2025. “Profiling Cell Identity and Tissue Architecture with Single-Cell and Spatial Transcriptomics.” Nature Reviews Molecular Cell Biology 26: 11–31. https://doi.org/10.1038/s41580-024-00768-2.
Gunz, Samuel, Helena L. Crowell, and Mark D. Robinson. 2025. “Analysis of Anatomical Multi-Cellular Structures from Spatial Omics Data Using Sosta.” bioRxiv. https://doi.org/10.1101/2025.10.13.682065.
Hao, Yuhan, Tim Stuart, Madeline H Kowalski, Saket Choudhary, Paul Hoffman, Austin Hartman, Avi Srivastava, et al. 2023. “Dictionary Learning for Integrative, Multimodal and Scalable Single-Cell Analysis.” Nature Biotechnology. https://doi.org/10.1038/s41587-023-01767-y.
Hartman, Austin, and Rahul Satija. 2024. “Comparative Analysis of Multiplexed in Situ Gene Expression Profiling Technologies.” eLife. https://doi.org/10.7554/eLife.96949.1.
He, Shanshan, Ruchir Bhatt, Carl Brown, Emily A. Brown, Derek L. Buhr, Kan Chantranuvatana, Patrick Danaher, et al. 2022. “High-Plex Imaging of RNA and Proteins at Subcellular Resolution in Fixed Tissue by Spatial Molecular Imaging.” Nature Biotechnology 40: 1794–1806. https://doi.org/10.1038/s41587-022-01483-z.
He, Yichun, Xin Tang, Jiahao Huang, Jingyi Ren, Haowen Zhou, Kevin Chen, Albert Liu, et al. 2021. “ClusterMap for Multi-Scale Clustering Analysis of Spatial Gene Expression.” Nature Communications 12 (1). https://doi.org/10.1038/s41467-021-26044-x.
Heidari, Elyas, Andrew Moorman, Dániel Unyi, Nikhita Pasnuri, Gleb Rukhovich, Domenico Calafato, Anna Mathioudaki, et al. 2025. “Segger: Fast and Accurate Cell Segmentation of Imaging-Based Spatial Transcriptomics Data.” bioRxiv, 2025.03.14.643160. https://doi.org/10.1101/2025.03.14.643160.
Huber, Wolfgang, Vincent J. Carey, Robert Gentleman, Simon Anders, Marc Carlson, Benilton S. Carvalho, Hector Corrada Bravo, et al. 2015. “Orchestrating High-Throughput Genomic Analysis with Bioconductor.” Nature Methods 12: 115–21. https://doi.org/10.1038/nmeth.3252.
Janesick, Amanda, Robert Shelansky, Andrew D. Gottscho, Florian Wagner, Stephen R. Williams, Morgane Rouault, Ghezal Beliakoff, et al. 2023. “High Resolution Mapping of the Tumor Microenvironment Using Integrated Single-Cell, Spatial and in Situ Analysis.” Nature Communications 14 (8353). https://doi.org/10.1038/s41467-023-43458-x.
Jin, Suoqin, Christian F Guerrero-Juarez, Lihua Zhang, Ivan Chang, Raul Ramos, Chen-Hsiang Kuan, Peggy Myung, Maksim V Plikus, and Qing Nie. 2021. “Inference and Analysis of Cell-Cell Communication Using CellChat.” Nature Communications 12 (1): 1088. https://doi.org/10.1038/s41467-021-21246-9.
Jones, Daniel C., Anna E. Elz, Azadeh Hadadianpour, Heeju Ryu, David R. Glass, and Evan W. Newell. 2025. “Cell Simulation as Cell Segmentation.” Nature Methods 22: 1331–42. https://doi.org/10.1038/s41592-025-02697-0.
Kleshchevnikov, Vitalii, Artem Shmatko, Emma Dann, Alexander Aivazidis, Hamish W King, Tong Li, Rasa Elmentaite, et al. 2022. Cell2location Maps Fine-Grained Cell Types in Spatial Transcriptomics.” Nature Biotechnology 40: 661–71. https://doi.org/10.1038/s41587-021-01139-4.
Korsunsky, Ilya, Nghia Millard, Jean Fan, Kamil Slowikowski, Fan Zhang, Kevin Wei, Yuriy Baglaenko, Michael Brenner, Po-Ru Loh, and Soumya Raychaudhuri. 2019. Fast, sensitive and accurate integration of single-cell data with Harmony.” Nature Methods 16 (12): 1289–96. https://doi.org/10.1038/s41592-019-0619-0.
Kuemmerle, Louis B., Malte D. Luecken, Alexandra B. Firsova, Lisa Barros de Andrade e Sousa, Lena Straßer, Ilhem Isra Mekki, Francesco Campi, et al. 2024. “Probe Set Selection for Targeted Spatial Transcriptomics.” Nature Methods 21: 2260–70. https://doi.org/10.1038/s41592-024-02496-z.
Kumar, Anurendra, Alex W. Schrader, Bhavay Aggarwal, Ali Ebrahimpour Boroojeny, Marisa Asadian, JuYeon Lee, You Jin Song, Sihai Dave Zhao, Hee-Sun Han, and Saurabh Sinha. 2024. “Intracellular Spatial Transcriptomic Analysis Toolkit (InSTAnT).” Nature Communications 15 (1). https://doi.org/10.1038/s41467-024-49457-w.
Kuznetsova, Alexandra, Per B. Brockhoff, and Rune H. B. Christensen. 2017. “lmerTest Package: Tests in Linear Mixed Effects Models.” Journal of Statistical Software 82: 1–26. https://doi.org/10.18637/jss.v082.i13.
Lee, Sang-Il. 2001. “Developing a Bivariate Spatial Association Measure: An Integration of Pearson’s r and Moran’s i.” Journal of Geographical Systems 3: 369–85. https://doi.org/10.1007/s101090100064.
Li, Haoyang, Hanmin Li, Juexiao Zhou, and Xin Gao. 2022. SD2: Spatially Resolved Transcriptomics Deconvolution Through Integration of Dropout and Spatial Information.” Bioinformatics 38 (21): 4878–84. https://doi.org/10.1093/bioinformatics/btac605.
Li, Haoyang, Juexiao Zhou, Zhongxiao Li, Siyuan Chen, Xingyu Liao, Bin Zhang, Ruochi Zhang, Yu Wang, Shiwei Sun, and Xin Gao. 2023. “A Comprehensive Benchmarking with Practical Guidelines for Cellular Deconvolution of Spatial Transcriptomics.” Nature Communications 14 (1548). https://doi.org/10.1038/s41467-023-37168-7.
Li, Mengbo, Ning Liu, Quoc Hoang Nguyen, and Yunshun Chen. 2025. “Preserving Tissue Structure Through Density-Based Spatial Analysis with Scider.” bioRxiv. https://doi.org/10.1101/2025.09.11.675745.
Li, Zhijian, Zain M. Patel, Dongyuan Song, Guanao Yan, Jingyi Jessica Li, and Luca Pinello. 2023. “Benchmarking Computational Methods to Identify Spatially Variable Genes and Peaks.” bioRxiv. https://doi.org/10.1101/2023.12.02.569717.
Li, Zhuoxuan, Tianjie Wang, Pengtao Liu, and Yuanhua Huang. 2023. SpatialDM: Rapid Identification of Spatially Co-Expressed Ligand-Receptor Reveals Cell-Cell Communication Patterns.” bioRxiv, 2022.08.19.504616. https://doi.org/10.1101/2022.08.19.504616.
Liang, Yuchen, Guowei Shi, Runlin Cai, Yuchen Yuan, Ziying Xie, Long Yu, Yingjian Huang, et al. 2024. “PROST: Quantitative Identification of Spatially Variable Genes and Domain Detection in Spatial Transcriptomics.” Nature Communications 15 (600). https://doi.org/10.1038/s41467-024-44835-w.
Liao, Yang, Gordon K Smyth, and Wei Shi. 2019. “The r Package Rsubread Is Easier, Faster, Cheaper and Better for Alignment and Quantification of RNA Sequencing Reads.” Nucleic Acids Research 47: e47. https://doi.org/10.1093/nar/gkz114.
Liu, Ning, Jarryd Martin, Dharmesh D Bhuva, Jinjin Chen, Mengbo Li, Samuel C. Lee, Malvika Kharbanda, et al. 2025. “hoodscanR: Profiling Single-Cell Neighborhoods in Spatial Transcriptomics Data.” bioRxiv. https://doi.org/10.1101/2024.03.26.586902.
Liu, Wei, Xu Liao, Ziye Luo, Yi Yang, Mai Chan Lau, Yuling Jiao, Xingjie Shi, et al. 2023. “Probabilistic Embedding, Clustering, and Alignment for Integrating Spatial Transcriptomics Data with PRECAST.” Nature Communications 14 (296). https://doi.org/10.1038/s41467-023-35947-w.
Liu, Yang, Marcello DiStasio, Graham Su, Hiromitsu Asashima, Archibald Enninful, Xiaoyu Qin, Yanxiang Deng, et al. 2023. “High-Plex Protein and Whole Transcriptome Co-Mapping at Cellular Resolution with Spatial CITE-Seq.” Nature Biotechnology 41: 1405–9. https://doi.org/10.1038/s41587-023-01676-0.
Liu, Zhaoyang, Dongqing Sun, and Chenfei Wang. 2022. “Evaluation of Cell-Cell Interaction Methods by Integrating Single-Cell RNA Sequencing Data with Spatial Information.” Genome Biology 23 (1): 218. https://doi.org/10.1186/s13059-022-02783-y.
Lopez, Romain, Baoguo Li, Hadas Keren-Shaul, Pierre Boyeau, Merav Kedmi, David Pilzer, Adam Jelinski, et al. 2022. DestVI Identifies Continuums of Cell Types in Spatial Transcriptomics Data.” Nature Biotechnology 40: 1360–69. https://doi.org/10.1038/s41587-022-01272-8.
Luecken, Malte D, M Büttner, K Chaichoompu, A Danese, M Interlandi, M F Mueller, D C Strobl, et al. 2022. Benchmarking atlas-level data integration in single-cell genomics.” Nature Methods 19 (1): 41–50. https://doi.org/10.1038/s41592-021-01336-8.
Lun, Aaron. 2022. “Basilisk: A Bioconductor Package for Managing Python Environments.” Journal of Open Source Software 7. https://doi.org/10.21105/joss.04742.
———. 2023. “Alabaster.base: Save Bioconductor Objects to File.” R Package. https://doi.org/10.18129/B9.bioc.alabaster.base.
Lun, Aaron T. L., Davis J. McCarthy, and John C. Marioni. 2016. “A Step-by-Step Workflow for Low-Level Analysis of Single-Cell RNA-Seq Data with Bioconductor.” F1000Research 5 (2122). https://doi.org/10.12688/f1000research.9501.2.
Lundberg, Emma, and Georg H. H. Borner. 2019. “Spatial Proteomics: A Powerful Discovery Tool for Cell Biology.” Nature Reviews Molecular Cell Biology 20: 285–302. https://doi.org/10.1038/s41580-018-0094-y.
Lütge, Almut, Joanna Zyprych-Walczak, Urszula Brykczynska Kunzmann, Helena L Crowell, Daniela Calini, Dheeraj Malhotra, Charlotte Soneson, and Mark D Robinson. 2021. CellMixS: quantifying and visualizing batch effects in single-cell RNA-seq data.” Life Science Alliance 4 (6): e202001004. https://doi.org/10.26508/lsa.202001004.
Ma, Ying, and Xiang Zhou. 2022. “Spatially Informed Cell-Type Deconvolution for Spatial Transcriptomics.” Nature Biotechnology 40 (9): 1349–59. https://doi.org/10.1038/s41587-022-01273-7.
Mah, Clarence K., Noorsher Ahmed, Nicole A. Lopez, Dylan C. Lam, Avery Pong, Alexander Monell, Colin Kern, et al. 2024. “Bento: A Toolkit for Subcellular Analysis of Spatial Transcriptomics Data.” Genome Biology 25 (1). https://doi.org/10.1186/s13059-024-03217-7.
Manukyan, Artür, Ella Bahry, Emanuel Wyler, Erik Becher, Anna Pascual-Reguant, Izabela Plumbom, Hasan Onur Dikmen, et al. 2023. “VoltRon: A Spatial Omics Analysis Platform for Multi-Resolution and Multi-Omics Integration Using Image Registration.” bioRxiv. https://doi.org/10.1101/2023.12.15.571667.
Marconato, Luca, Giovanni Palla, Kevin A. Yamauchi, Isaac Virshup, Elyas Heidari, Tim Treis, Wouter-Michiel Vierdag, et al. 2025. “SpatialData: An Open and Universal Data Framework for Spatial Omics.” Nature Methods 22: 58–62. https://doi.org/10.1038/s41592-024-02212-x.
Maynard, Kristen R., Leonardo Collado-Torres, Lukas M. Weber, Cedric Uytingco, Brianna K. Barry, Stephen R. Williams, Joseph L. Catallini II, et al. 2021. “Transcriptome-Scale Spatial Gene Expression in the Human Dorsolateral Prefrontal Cortex.” Nature Neuroscience 24: 425–36. https://doi.org/10.1038/s41593-020-00787-0.
McCarthy, Davis J, Kieran R Campbell, Aaron T L Lun, and Quin F Wills. 2017. “Scater: Pre-Processing, Quality Control, Normalization and Visualization of Single-Cell RNA-Seq Data in r.” Bioinformatics 33: 1179–86. https://doi.org/10.1093/bioinformatics/btw777.
Miller, Brendan F, Feiyang Huang, Lyla Atta, Arpan Sahoo, and Jean Fan. 2022. “Reference-Free Cell Type Deconvolution of Multi-Cellular Pixel-Resolution Spatially Resolved Transcriptomics Data.” Nature Communications 13 (1): 2339. https://doi.org/10.1038/s41467-022-30033-z.
Mitchel, Jonathan, Teng Gao, Eli Cole, Viktor Petukhov, and Peter V. Kharchenko. 2025. “Impact of Segmentation Errors in Analysis of Spatial Transcriptomics Data.” bioRxiv. https://doi.org/10.1101/2025.01.02.631135.
Moffitt, Jeffrey R., Emma Lundberg, and Holger Heyn. 2022. “The Emerging Landscape of Spatial Profiling Technologies.” Nature Reviews Genetics 23: 741–59. https://doi.org/10.1038/s41576-022-00515-3.
Moses, Lambda, Pétur Helgi Einarsson, Kayla Jackson, Laura Luebbert, A. Sina Booeshaghi, Sindri Antonsson, Nicolas Bray, Páll Melsted, and Lior Pachter. 2023. “Voyager: Exploratory Single-Cell Genomics Data Analysis with Geospatial Statistics.” bioRxiv. https://doi.org/10.1101/2023.07.20.549945.
Moses, Lambda, and Lior Pachter. 2022. “Museum of Spatial Transcriptomics.” Nature Methods 19: 534–46. https://doi.org/10.1038/s41592-022-01409-2.
Mund, Andreas, Andreas-David Brunner, and Matthias Mann. 2022. “Unbiased Spatial Proteomics with Single-Cell Resolution in Tissues.” Molecular Cell 82: 2335–49. https://doi.org/10.1016/j.molcel.2022.05.022.
Nitzan, Mor, Nikos Karaiskos, Nir Friedman, and Nikolaus Rajewsky. 2019. “Gene Expression Cartography.” Nature 576: 132–37. https://doi.org/10.1038/s41586-019-1773-3.
Novoselsky, Roy, Ofra Golani, Tal Barkai, Merav Kedmi, Inna Goliand, Michal Fine, Ilan Kent, Ido Nachmany, and Shalev Itzkovitz. 2025. “Subcellular mRNA Localization Patterns Across Tissues Resolved with Spatial Transcriptomics.” bioRxiv, September. https://doi.org/10.1101/2025.09.07.674688.
Ospina, Oscar E, Christopher M Wilson, Alex C Soupir, Anders Berglund, Inna Smalley, Kenneth Y Tsai, and Brooke L Fridley. 2022. spatialGE: Quantification and Visualization of the Tumor Microenvironment Heterogeneity Using Spatial Transcriptomics.” Bioinformatics 38 (9): 2645–47. https://doi.org/10.1093/bioinformatics/btac145.
Oyler-Yaniv, Alon, Jennifer Oyler-Yaniv, Benjamin M Whitlock, Zhiduo Liu, Ronald N Germain, Morgan Huse, Grégoire Altan-Bonnet, and Oleg Krichevsky. 2017. “A Tunable Diffusion-Consumption Mechanism of Cytokine Propagation Enables Plasticity in Cell-to-Cell Communication in the Immune System.” Immunity 46 (4): 609–20. https://doi.org/10.1016/j.immuni.2017.03.011.
Palla, Giovanni, David S. Fischer, Aviv Regev, and Fabian J. Theis. 2022. “Spatial Components of Molecular Tissue Biology.” Nature Biotechnology 40: 308–18. https://doi.org/10.1038/s41587-021-01182-1.
Palla, Giovanni, Hannah Spitzer, Michal Klein, David Fischer, Anna Christina Schaar, Louis Benedikt Kuemmerle, Sergei Rybakov, et al. 2022. “Squidpy: A Scalable Framework for Spatial Omics Analysis.” Nature Methods 19: 171–78. https://doi.org/10.1038/s41592-021-01358-2.
Palomino, Tana V., and David C. Muddiman. 2025. “Mass Spectrometry Imaging of n-Linked Glycans: Fundamentals and Recent Advances.” Mass Spectrometry Reviews, 1–25. https://doi.org/10.1002/mas.21895.
Pardo, Brenda, Abby Spangler, Lukas M. Weber, Stephanie C. Page, Stephanie C. Hicks, Andrew E. Jaffe, Keri Martinowich, Kristen R. Maynard, and Leonardo Collado-Torres. 2022. “spatialLIBD: An r/Bioconductor Package to Visualize Spatially-Resolved Transcriptomics Data.” BMC Genomics 23 (434). https://doi.org/10.1186/s12864-022-08601-w.
Park, Jeongbin, Wonyl Choi, Sebastian Tiesmeyer, Brian Long, Lars E. Borm, Emma Garren, Thuc Nghi Nguyen, et al. 2021. “Cell Segmentation-Free Inference of Cell Types from in Situ Transcriptomics Data.” Nature Communications 12 (3545). https://doi.org/10.1038/s41467-021-23807-4.
Paul, Indranil, Carl White, Isabella Turcinovic, and Andrew Emili. 2021. “Imaging the Future: The Emerging Era of Single-Cell Spatial Proteomics.” The FEBS Journal 288: 6990–7001. https://doi.org/10.1111/febs.15685.
Pebesma, Edzer. 2018. “Simple Features for R: Standardized Support for Spatial Vector Data.” The R Journal 10 (1): 439–46. https://doi.org/10.32614/rj-2018-009.
Pebesma, Edzer, and Roger Bivand. 2023. Spatial Data Science: With Applications in r. 1st Edition. Chapman; Hall/CRC. https://doi.org/10.1201/9780429459016.
Pebesma, Edzer, and Roger S Bivand. 2005. “Classes and Methods for Spatial Data: The Sp Package.” The Newsletter of the R Project 5 (2).
Peters Couto, Bárbara Zita, Nicholas Robertson, Ellis Patrick, and Shila Ghazanfar. 2023. “MoleculeExperiment Enables Consistent Infrastructure for Molecule-Resolved Spatial Omics Data in Bioconductor.” Bioinformatics 39 (btad550, 9). https://doi.org/10.1093/bioinformatics/btad550.
Petukhov, Viktor, Rosalind J. Xu, Ruslan A. Soldatov, Paolo Cadinu, Konstantin Khodosevich, Jeffrey R. Moffitt, and Peter V. Kharchenko. 2022. “Cell Segmentation in Imaging-Based Spatial Transcriptomics.” Nature Biotechnology 40: 345–54. https://doi.org/10.1038/s41587-021-01044-w.
Rao, Anjali, Dalia Barkley, Gustavo S. França, and Itai Yanai. 2021. “Exploring Tissue Architecture Using Spatial Transcriptomics.” Nature 596: 211–20. https://doi.org/https://doi.org/10.1038/s41586-021-03634-9.
Rautenstrauch, Pia, and Uwe Ohler. 2025. Shortcomings of silhouette in single-cell integration benchmarking.” Nature Biotechnology, 1–5. https://doi.org/10.1038/s41587-025-02743-4.
Ren, Honglei, Benjamin L. Walker, Zixuan Cang, and Qing Nie. 2022. “Identifying Multicellular Spatiotemporal Organization of Cells with SpaceFlow.” Nature Communications 13 (4076). https://doi.org/10.1038/s41467-022-31739-w.
Righelli, Dario, Lukas M Weber, Helena L Crowell, Brenda Pardo, Leonardo Collado-Torres, Shila Ghazanfar, Aaron T L Lun, Stephanie C Hicks, and Davide Risso. 2022. “SpatialExperiment: Infrastructure for Spatially-Resolved Transcriptomics Data in r Using Bioconductor.” Bioinformatics 38: 3128–31. https://doi.org/10.1093/bioinformatics/btac299.
Ripley, B. D. 1976. “The Second-Order Analysis of Stationary Point Processes.” Journal of Applied Probability 13: 255–66. https://doi.org/10.2307/3212829.
Rue-Albrecht, Kevin, Federico Marini, Charlotte Soneson, and Aaron T. L. Lun. 2018. “iSEE: Interactive SummarizedExperiment Explorer.” F1000Research 7 (741). https://doi.org/10.12688/f1000research.14966.1.
Salim, Agus, Dharmesh D. Bhuva, Carissa Chen, Chin Wee Tan, Pengyi Yang, Melissa J. Davis, and Jean Y. H. Yang. 2025. “SpaNorm: Spatially-Aware Normalization for Spatial Transcriptomics Data.” Genome Biology 26 (109). https://doi.org/10.1186/s13059-025-03565-y.
Sang-aram, Chananchida, Robin Browaeys, Ruth Seurinck, and Yvan Saeys. 2023. “Spotless, a Reproducible Pipeline for Benchmarking Cell Type Deconvolution in Spatial Transcriptomics.” eLife 12 (RP88431). https://doi.org/10.7554/eLife.88431.
Schott, Marie, Daniel León-Periñán, Elena Splendiani, Elisabetta Ferretti, Giuseppe Macino, Nikos Karaiskos, and Nikolaus Rajewsky. 2025. “Protocol for High-Resolution 3D Spatial Transcriptomics Using Open-ST.” STAR Protocols 6 (103521, 1). https://doi.org/10.1016/j.xpro.2024.103521.
Schott, Marie, Daniel León-Periñán, Elena Splendiani, Leon Strenger, Jan Robin Licha, Tancredi Massimo Pentimalli, Simon Schallenberg, et al. 2024. “Open-ST: High-Resolution Spatial Transcriptomics in 3D.” Cell 187: 3953–72. https://doi.org/10.1016/j.cell.2024.05.055.
Semba, Takashi, and Takatsugu Ishimoto. 2024. “Spatial Analysis by Current Multiplexed Imaging Technologies for the Molecular Characterisation of Cancer Tissues.” British Journal of Cancer 131: 1737–47. https://doi.org/10.1038/s41416-024-02882-6.
Singhal, Vipul, Nigel Chou, Joseph Lee, Yifei Yue, Jinyue Liu, Wan Kee Chock, Li Lin, et al. 2024. “BANKSY Unifies Cell Typing and Tissue Domain Segmentation for Scalable Spatial Omics Data Analysis.” Nature Genetics 56: 431–41. https://doi.org/10.1038/s41588-024-01664-3.
Smith, Mike, and Hugo Gruson. 2023. “Rarr: Read Zarr Files in r.” R Package. https://doi.org/10.18129/B9.bioc.Rarr.
Sofroniew, Nicholas, Talley Lambert, Grzegorz Bokota, Juan Nunez-Iglesias, Peter Sobolewski, Andrew Sweet, Lorenzo Gaifas, et al. 2025. “Napari: A Multi-Dimensional Image Viewer for Python.” Zenodo. https://doi.org/10.5281/zenodo.16883660.
Song, Qianqian, and Jing Su. 2021. DSTG: Deconvoluting Spatial Transcriptomics Data Through Graph-Based Artificial Intelligence.” Briefings in Bioinformatics 22 (5): bbaa414. https://doi.org/10.1093/bib/bbaa414.
Ståhl, Patrik L., Fredrik Salmén, Sanja Vickovic, Anna Lundmark, José Fernández Navarro, Jens Magnusson, Stefania Giacomello, et al. 2016. “Visualization and Analysis of Gene Expression in Tissue Sections by Spatial Transcriptomics.” Science 353: 78–82. https://doi.org/10.1126/science.aaf2403.
Stickels, Robert R., Evan Murray, Pawan Kumar, Jilong Li, Jamie L. Marshall, Daniela J. Di Bella, Paola Arlotta, Evan Z. Macosko, and Fei Chen. 2021. “Highly Sensitive Spatial Transcriptomics at Near-Cellular Resolution with Slide-seqV2.” Nature Biotechnology 39: 313–19. https://doi.org/10.1038/s41587-020-0739-1.
Stringer, Carsen, Tim Wang, Michalis Michaelos, and Marius Pachitariu. 2021. “Cellpose: A Generalist Algorithm for Cellular Segmentation.” Nature Methods 18: 100–106. https://doi.org/10.1038/s41592-020-01018-x.
Su, Shian, Lori Shepherd, Marcel Ramos, Felix G. M. Ernst, Jennifer Wokaty, Charlotte Soneson, Martin Morgan, Vince Carey, and Sean Davis. 2025. “BiocPkgTools: Collection of Simple Tools for Learning about Bioconductor Packages.” R Package. https://doi.org/10.18129/B9.bioc.BiocPkgTools.
Subramanian, Aravind, Pablo Tamayo, Vamsi K Mootha, Sayan Mukherjee, Benjamin L Ebert, Michael A Gillette, Amanda Paulovich, et al. 2005. “Gene Set Enrichment Analysis: A Knowledge-Based Approach for Interpreting Genome-Wide Expression Profiles.” Proceedings of the National Academy of Sciences of the USA 102 (43): 15545–50. https://doi.org/10.1073/pnas.0506580102.
Sun, Dongqing, Zhaoyang Liu, Taiwen Li, Qiu Wu, and Chenfei Wang. 2022. STRIDE: Accurately Decomposing and Integrating Spatial Transcriptomics Using Single-Cell RNA Sequencing.” Nucleic Acids Research 50 (7): e42. https://doi.org/10.1093/nar/gkac150.
Sun, Shiquan, Jiaqiang Zhu, and Xiang Zhou. 2020. “Statistical Analysis of Spatial Expression Patterns for Spatially Resolved Transcriptomic Studies.” Nature Methods 17: 193–200. https://doi.org/10.1038/s41592-019-0701-7.
Svensson, Valentine, Sarah A Teichmann, and Oliver Stegle. 2018. “SpatialDE: Identification of Spatially Variable Genes.” Nature Methods 15: 343–46. https://doi.org/10.1038/nmeth.4636.
Tanevski, Jovan, Ricardo Omar Ramirez Flores, Attila Gabor, Denis Schapiro, and Julio Saez-Rodriguez. 2022. “Explainable Multiview Framework for Dissecting Spatial Relationships from Highly Multiplexed Data.” Genome Biology 23 (1): 97. https://doi.org/10.1186/s13059-022-02663-5.
Tian, Luyi, Fei Chen, and Evan Z. Macosko. 2023. “The Expanding Vistas of Spatial Transcriptomics.” Nature Biotechnology 41: 773–82. https://doi.org/10.1038/s41587-022-01448-2.
Tobler, W. R. 1970. “A Computer Movie Simulating Urban Growth in the Detroit Region.” Economic Geography 46: 234–40. https://doi.org/10.2307/143141.
Tomczak, Katarzyna, Patrycja Czerwińska, and Maciej Wiznerowicz. 2015. “The Cancer Genome Atlas (TCGA): An Immeasurable Source of Knowledge.” Contemporary Oncology/Współczesna Onkologia 19: A68–77. https://doi.org/10.5114/wo.2014.47136.
Totty, Michael, Stephanie C. Hicks, and Boyi Guo. 2025. “SpotSweeper: Spatially Aware Quality Control for Spatial Transcriptomics.” Nature Methods 22: 1520–30. https://doi.org/10.1038/s41592-025-02713-3.
Traag, V. A., L. Waltman, and N. J. van Eck. 2019. “From Louvain to Leiden: Guaranteeing Well-Connected Communities.” Scientific Reports 9 (5233). https://doi.org/10.1038/s41598-019-41695-z.
Tran, Hoa Thi Nhu, Kok Siong Ang, Marion Chevrier, Xiaomeng Zhang, Nicole Yee Shin Lee, Michelle Goh, and Jinmiao Chen. 2020. A benchmark of batch-effect correction methods for single-cell RNA sequencing data.” Genome Biology 21 (1): 12. https://doi.org/10.1186/s13059-019-1850-9.
Ushey, Kevin, Joseph J. Allaire, and Yuan Tang. 2017. “Reticulate: Interface to ’Python’.” R Package. https://doi.org/10.32614/CRAN.package.reticulate.
Varrone, Marco, Daniele Tavernari, Albert Santamaria-Martínez, Logan A. Walsh, and Giovanni Ciriello. 2024. “CellCharter Reveals Spatial Cell Niches Associated with Tissue Remodeling and Cell Plasticity.” Nature Genetics 56: 74–84. https://doi.org/10.1038/s41588-023-01588-4.
Vickovic, Sanja, Denis Schapiro, Konstantin Carlberg, Britta Lötstedt, Ludvig Larsson, Franziska Hildebrandt, Marina Korotkova, et al. 2022. “Three-Dimensional Spatial Transcriptomics Uncovers Cell Type Localizations in the Human Rheumatoid Arthritis Synovium.” Communications Biology 5 (129). https://doi.org/10.1038/s42003-022-03050-3.
Virshup, Isaac, Sergei Rybakov, Fabian J Theis, Philipp Angerer, and F Alexander Wolf. 2024. “Anndata: Access and Store Annotated Data Matrices.” Journal of Open Source Software 9 (101): 4371. https://doi.org/10.21105/joss.04371.
Walter, Florin C, Oliver Stegle, and Britta Velten. 2023. “FISHFactor: A Probabilistic Factor Model for Spatial Transcriptomics Data with Subcellular Resolution.” Edited by Christina Kendziorski. Bioinformatics 39 (5). https://doi.org/10.1093/bioinformatics/btad183.
Weber, Lukas M., Arkajyoti Saha, Abhirup Datta, Kasper D. Hansen, and Stephanie C. Hicks. 2023. “nnSVG for the Scalable Identification of Spatially Variable Genes Using Nearest-Neighbor Gaussian Processes.” Nature Communications 14 (4059). https://doi.org/10.1038/s41467-023-39748-z.
Wei, Xiaoyu, Sulei Fu, Hanbo Li, Yang Liu, Shuai Wang, Weimin Feng, Yunzhi Yang, et al. 2022. “Single-Cell Stereo-Seq Reveals Induced Progenitor Cells Involved in Axolotl Brain Regeneration.” Science 377. https://doi.org/10.1126/science.abp9444.
Welch, Joshua D., Velina Kozareva, Ashley Ferreira, Charles Vanderburg, Carly Martin, and Evan Z. Macosko. 2019. “Single-Cell Multi-Omic Integration Compares and Contrasts Features of Brain Cell Identity.” Cell 177: 1873–87. https://doi.org/10.1016/j.cell.2019.05.006.
Windhager, Jonas, Vito Riccardo Tomaso Zanotelli, Daniel Schulz, Lasse Meyer, Michelle Daniel, Bernd Bodenmiller, and Nils Eling. 2023. “An End-to-End Workflow for Multiplexed Image Processing and Analysis.” Nature Protocols 18: 3565–3613. https://doi.org/10.1038/s41596-023-00881-0.
Wolf, F. Alexander, Philipp Angerer, and Fabian J. Theis. 2018. “SCANPY: Large-Scale Single-Cell Gene Expression Data Analysis.” Genome Biology 19 (15). https://doi.org/10.1186/s13059-017-1382-0.
Wu, Lidan, Joseph M. Beechem, and Patrick Danaher. 2024. “FastReseg: Using Transcript Locations to Refine Image-Based Cell Segmentation Results in Spatial Transcriptomics.” bioRxiv. https://doi.org/10.1101/2024.12.05.627051.
Xu, Hanwen, Naoto Usuyama, Jaspreet Bagga, Sheng Zhang, Rajesh Rao, Tristan Naumann, Cliff Wong, et al. 2024. “A Whole-Slide Foundation Model for Digital Pathology from Real-World Data.” Nature 630 (8015): 181–88. https://doi.org/10.1038/s41586-024-07441-w.
Xu, Yang, Callum J. Sargeant, Yue You, Yupei You, Shian Su, Changqing Wang, Luyi Tian, Yunshun Chen, and Matthew E. Ritchie. 2025. “stPipe: A Flexible and Streamlined r/Bioconductor Pipeline for Preprocessing Sequencing-Based Spatial Transcriptomics Data.” bioRxiv. https://doi.org/10.1101/2025.04.16.649254.
Yan, Guanao, Shuo Harper Hua, and Jingyi Jessica Li. 2024. “Categorization of 33 Computational Methods to Detect Spatially Variable Genes from Spatially Resolved Transcriptomics Data.” arXiv. https://doi.org/10.48550/arXiv.2405.18779.
Yu, Jinge, and Xiangyu Luo. 2022. “Identification of Cell-Type-Specific Spatially Variable Genes Accounting for Excess Zeros.” Bioinformatics 38: 4135–44. https://doi.org/10.1093/bioinformatics/btac457.
Yu, Shan, and Wei Vivian Li. 2024. “spVC for the Detection and Interpretation of Spatial Gene Expression Variation.” Genome Biology 25 (103). https://doi.org/10.1186/s13059-024-03245-3.
Zappia, Luke, Aaron Lun, Jack Kamm, Robrecht Cannoodt, Gabriel Hoffman, and Marek Cmero. 2020. “anndataR Improves Interoperability Between r and Python in Single-Cell Transcriptomics.” R Package. https://doi.org/10.18129/B9.bioc.zellkonverter.
Zhang, Di, Yanxiang Deng, Petra Kukanja, Eneritz Agirre, Marek Bartosovic, Mingze Dong, Cong Ma, et al. 2023. “Spatial Epigenome–Transcriptome Co-Profiling of Mammalian Tissues.” Nature 616: 113–22. https://doi.org/10.1038/s41586-023-05795-1.
Zhang, Hua, Kelly H. Lu, Malik Ebbini, Penghsuan Huang, Haiyan Lu, and Lingjun Li. 2024. “Mass Spectrometry Imaging for Spatially Resolved Multi-Omics Molecular Mapping.” Npj Imaging 2 (20). https://doi.org/10.1038/s44303-024-00025-3.
Zhang, Yida, Viktor Petukhov, Evan Biederstedt, Richard Que, Kun Zhang, and Peter V. Kharchenko. 2024. “Gene Panel Selection for Targeted Spatial Transcriptomics.” Genome Biology 25 (35). https://doi.org/10.1186/s13059-024-03174-1.
Zhao, Edward, Matthew R. Stone, Xing Ren, Jamie Guenthoer, Kimberly S. Smythe, Thomas Pulliam, Stephen R. Williams, et al. 2021. “Spatial Transcriptomics at Subspot Resolution with BayesSpace.” Nature Biotechnology 39: 1375–84. https://doi.org/10.1038/s41587-021-00935-2.
Zhu, Jiaqiang, Shiquan Sun, and Xiang Zhou. 2021. “SPARK-x: Non-Parametric Modeling Enables Scalable and Robust Detection of Spatial Expression Patterns for Large Spatial Transcriptomic Studies.” Genome Biology 22 (184). https://doi.org/10.1186/s13059-021-02404-0.
Back to top